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We present in this paper a novel generalized unit system (GUS) for electromag-
netic formulation and for improving the numerical behavior of the solution procedure
by decreasing the condition number of the finite element (FE) matrices. The goal is
to express, in the GUS, the governing electromagnetic equations in a form that does
not involve any factors such as 4π and those related to the physical properties of
vacuum. This goal is achieved by scaling all physical quantities. The scaling factors
are not all free parameters, but are constrained by specific relations. We prove that
there are only two free parameters, but only one is significant for minimizing the con-
dition number of the FE matrices. Numerical examples are presented to illustrate the
essential features of the proposed GUS, including the minimization of the condition
number. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

With the ever-increasing operating frequencies in power electronics, there is a growing
demand to accurately solve coupled electromagnetic problems [1]. An accurate computer
model of electromagnetic devices is crucial to reduce their cost and to improve their design.
Electric and magnetic fields in an electromagnetic device are solutions to Maxwell’s equa-
tions, which can be expressed in many unit systems. The choice of the unit system depends on
the type of application [2, 3]. On the other hand, the commonly used unit systems often lead
to ill-conditioned finite element (FE) matrices due to large changes in the material properties
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[4, 5], in particular the conductivity, as well as the characteristics of the element geometric
dimensions of the FE model, such as poor aspect ratio. For power electronic devices func-
tioning at the frequency of interest, in the SI unit system, the numerical values of the terms
related to the electric current dominate those that are related to the other physical processes.
As the electric current is only present inside the conductor (e.g., the winding wire for a power
transformer), the terms of the FE matrix inside the conductor are much larger than those
outside the conductor, thereby leading to a large condition number in the resulting FE ma-
trix. This numerical ill-conditioning often makes the analysis impossible (see, e.g., [4] and
the examples in this work). In the past, some researchers have suggested the use of scaling.
In [6], the use of a volt, ohm, meter, and second (VOMS) unit system was suggested. Unlike
our proposed generalized unit system (GUS), the VOMS unit system cannot, however, be
modified to account for a change in the excitation frequency and in the material properties.

To decrease the condition number of the FE matrices resulting from the discretization
of the time-harmonic coupled electromagnetic (EM) problems, and hence to improve the
numerical behavior of the FE solution procedure, we propose in this paper a multiple-scale
technique, to transform Maxwell’s equations to a generalized unit system, where the EM
quantities are nondimensionalized. The technique requires a set of scaling parameters that
are determined by the physics of the electromagnetic problem. The constant coefficients
(e.g., 4π , etc.) in Maxwell’s equations and in the constitutive laws are eliminated since
they are absorbed into the field quantities in the scaling process. The physical meaning and
the numerical values of the electric and magnetic field quantities in the GUS depend on
two primary scaling parameters. A suitable choice of these two primary scaling parameters
shifts the focus of the problem away from the dominating effect of the conductors and, as a
consequence, reduces the condition number in the FE matrices, thus significantly improving
the accuracy. Moreover, the scaled Maxwell equations are more convenient for problem for-
mulation and for subsequent mathematical analysis. Scaling proves to be particularly useful
for modeling electromagnetic devices having a complex geometry and a mixture of regions
of finite conductivity and zero conductivity. We demonstrate the efficacy of this scaling tech-
nique in a FE model for a single cell of an advanced multilayer ceramic capacitor (MLCC)
designed by Ngo [7–8]. For example, the condition number of the solution for a single cell in
a capacitor (Fig. 1a) with an applied voltage at the left end of the top electrode and at the right
end of the bottom electrode can be improved from O(1020) in the SI unit system to O(1013)

FIG. 1. (a) A schematic of one cell in an MLCC (not drawn to scale). The direction of the current flow is
indicated by arrows. (b) Condition number vs scaling parameter αx .
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in the optimal generalized unit system (GUS). The relative error4 improves fromO(10−2)%
to O(10−11)%. The choice of the scaling parameter depends on the electromagnetic proper-
ties of the materials and the frequency of excitation. The condition number and the relative
errors also depend on the boundary conditions. The application of the concept of the GUS to
a substantial physics problem was reported in another paper in the analysis of a complex and
novel class of advanced multilayer capacitors, in which the use of the GUS is critical [9].

We first review the governing equations for electromagnetic problems in various com-
monly used unit systems and the FE discrete matrix forms of Maxwell’s equations for static,
transient, and time-harmonic problems. We then introduce a unit scaling methodology that
led to a new generalized unit system for improving the matrix condition number of the
finite element matrices. Constrained relations and only one primary scaling parameter are
proposed for unit conversion. We derive in detail the unit conversion for symbols, for numer-
ical numbers, and for FE matrices. The discussions for static, transient, and time-harmonic
problems show how the new unit system can significantly improve the numerical behavior
of the solution procedure for EM problems. It should be noted, however, that the applica-
tion of the proposed GUS is not restricted to the stiff problem encountered in MLCC. For
example, Maxwell’s equations expressed in the GUS take on a simple form, in which none
of the coefficients such as 4π and those related to the physical properties of vacuum appear.

A numerical example involving a parallel plate capacitor with poor aspect ratio shows
a significant improvement of FE matrix condition number and thus of the accuracy of the
results.

2. ELECTROMAGNETIC GOVERNING EQUATIONS

2.1. EM Equations in RCGS Unit System

The governing equations for a general EM problem in the rationalized CGS (RCGS)
units are as follows. First, there are the four Maxwell equations,

Faraday’s law:
1

c

∂B
∂t

+ curl E = 0, (2.1)

Gauss’s law for electric field: div D − ρf = 0, (2.2)

Ampère’s law: −1

c

∂D
∂t

+ curl H − 1

c
Jf = 1

c
Ja, (2.3)

Gauss’s law for magnetic induction: div B = 0, (2.4)

where the field quantities are the electric field E, the magnetic induction B, the electric induc-
tion D, and the magnetic field H. The quantities Jf and ρf are the field induced free-current
volume density and free-charge volume density, respectively. In some electromagnetic prob-
lems an applied free-current volume density Ja is prescribed. In addition there are the two
constitutive laws,

D = E + P, H = B − M, (2.5)

4 Here, the numerical accuracy of the solution of a linear system of equations Kd = f is estimated by the
relative error

‖Kd − f ‖2

‖ f ‖2
,

where K is a square matrix and f is the right-hand-side column vector. The computed solution is represented by
the column vector d .
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and the force-field relationship and Newton’s second law,

f = ρfE + 1

c
Jf × B, F = mẍ, (2.6)

where f, F, m, and ẍ represent the force vector per unit volume, force vector, mass, and
acceleration vector, respectively.

2.2. EM Equations in Various Unit Systems

We summarize the aforementioned EM governing equations in various unit system his-
torically developed for EM field problems [2, 3] in Table I, which lists the four CGS
(centimeter, gram, and second) systems—the electrostatic system (CGS esu), the electro-
magnetic system (CGS emu), the Gaussian system, unrationalized (CGS Gaussian), and
the Heaviside–Lorentz rationalized system (CGS Heaviside–Lorentz); the most commonly

TABLE I

Maxwell Equations in Different Unit Systems

Unit system D, H Maxwell equations

CGS esu D = E + 4πP div D = 4πρf, curl H = 4πJf + ∂D
∂t

H = c2B − 4πM div B = 0, curl E + ∂B
∂t

= 0

f = ρfE + Jf × B

CGS emu D = 1

c2
E + 4πP div D = 4πρf, curl H = 4πJf + ∂D

∂t

H = B − 4πM div B = 0, curl E + ∂B
∂t

= 0

f = ρfE + Jf × B

CGS Gaussian D = E + 4πP div D = 4πρf, curl H = 4π

c
Jf + 1

c

∂D
∂t

(unrationalized)
H = B − 4πM div B = 0, curl E + 1

c

∂B
∂t

= 0

f = ρfE + 1

c
Jf × B

CGS Heaviside–Lorentz D = E + P div D = ρf, curl H = 1

c
Jf + 1

c

∂D
∂t

(rationalized)
H = B − M div B = 0, curl E + 1

c

∂B
∂t

= 0

f = ρfE + 1

c
Jf × B

SI system D = ε0E + P div D = ρf, curl H = Jf + ∂D
∂t

H = 1

µ0
B − M div B = 0, curl E + ∂B

∂t
= 0

f = ρfE + Jf × B

Generalized unit system D = E + P div D = ρf, curl H = Jf + ∂D
∂t

(GUS)
H = B − M div B = 0, curl E + ∂B

∂t
= 0

f = ρfE + Jf × B

Note. The universal constants are the speed of light in vacuum c = 2.99792458 × 1010 cm/s,
the permittivity of free space ε0 = 1/(36π) × 10−9 SI units, and the permeability of free space
µ0 = 4π × 10−7 SI units.
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used SI unit system, which is the same as the rationalized MKSA (meter, kilogram, second,
and ampere) system; and the governing equations in the generalized unit system, which are
similar, except that the factor 1/c is omitted.

3. GALERKIN FE PROJECTION (SI UNIT SYSTEM)

The use of FE analysis to model electromagnetic components is well established, e.g.,
[10, 11]. The principle of virtual power for electromagnetics [12] is the basis for the approx-
imation. A detailed discussion of the FE procedure can be found in [13] and [14]. Here we
present the discrete matrix form of Maxwell’s equations after a Galerkin FE projection in
terms of potentials in the SI unit system. The present formulation uses the magnetic vector
potential A together with the time-integrated scalar potential ψ [15].

3.1. Maxwell Equations in Terms of Potentials

The following definition of the potentials A and ψ [15]

B =: curl A, E =: −grad
∂ψ

∂t
− ∂A

∂t
, (3.1)

satisfy Faraday’s law and Gauss’s law for magnetic induction. Therefore, the partial differ-
ential equations to be solved for the electromagnetic problem formulated using potentials
A and ψ are

curl H − ∂D
∂t

− Jf = Ja, div D − ρf = 0, (3.2)

where all the expressions on the left-hand side must be represented in terms of these poten-
tials and where Ja is the applied source.

The part of the volume � in which the current density Jf is not zero in the presence of a
nonzero electric field E is characterized as a region of finite conductivity, and is designated
to be �cond ⊂ �. Because the focus of the present work does not apply to superconductors,
we designate the remaining volume (�\�cond) to be the nonconductive region.

The field quantities H, D, and Jf are related to the potentials defined in (3.1) via the
constitutive equations

D = ε0E + P(E), H = 1

µ0
B − M(B), Jf ≡ Jf(E), (3.3)

where the polarization P is a nonlinear function of the electric field E, and the magnetization
M is a nonlinear function of the magnetic induction B. Here, we assume linear-isotropic
constitutive relationships, i.e., the relations in (3.3) take the form

D = ε(x)E, H = 1

µ(x)
B, Jf = σ(x)E, (3.4)

where the permittivity ε, permeability µ, and conductivity σ are functions only of position x.
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3.2. FE Discrete Maxwell Equations

3.2.1. Static Problems

The FE matrix equation for an electrostatic problem derived from Gauss’s law for electric
fields (2.2) is

[Mψψ ]{ψ̇0} = {Fψ0}, (3.5)

where Mψψ

I J = ∫
�\�cond

ε(grad NI ) · (grad NJ ) d�. Note that NI and NJ are finite element
interpolation functions associated with nodes I and J , respectively.

The FE matrix equation for the magnetostatic problem derived from Ampère’s law (2.3)
at static condition is

[K AA]{A0} = {F A0}. (3.6)

The “stiffness” matrix K AA can be partitioned into submatrices K AA
I J ∈ R

3×3, with

K AA
I J :=

∫
�

1

µ
(grad NI · grad NJ )I d� −

∫
�

1

µ
(grad NJ ⊗ grad NI ) d� ∈ R

3×3, (3.7)

where I ∈ R
3×3 is the identity matrix.

In summary, the matrix equation for the static case is stated as

Find A0 ∈ R
(3n A0 ×1) and ψ̇0 ∈ R

(nψ0×1) such that

(3.8)[
K AA 0

0 Mψψ

]{A0

ψ̇0

}
=

{
FA0

Fψ0

}
,

where A0 contains the unknown degrees of freedom corresponding to the vector potential
A0, and ψ̇0 contains the unknown degrees of freedom corresponding to the scalar potential
ψ̇0. The matrix K AA ∈ R

(3n A0 ×3n A0 ) and Mψψ ∈ R
(nψ0 ×nψ0 ) are symmetric and positive

semidefinite.5 The number n A0 corresponds to the number of nodes at which the vector
potential A0 is to be determined, and the number nψ0 corresponds to the number of nodes
at which the scalar potential ψ̇0 is to be determined.

3.2.2. Transient Problems

The FE matrix equation for the transient problem is derived from Ampère’s law (3.2)1

and the time-integrated continuity equation

∂(div D)

∂t
+ div[Jf + Ja] = 0. (3.9)

5 For piecewise constant material properties, two-point Gauss integration is used to calculate the entries in the
matrices K AA and Mψψ . Numerical experiments show that no significant improvement in accuracy is achieved
with more Gauss points.
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Equations (3.2)1 and (3.9) can be expressed in the form


−∂D
∂t

∂

∂t
(div D)


︸ ︷︷ ︸

+
{ −Jf

(div Jf)

}
︸ ︷︷ ︸ +

{
curl H

0

}
︸ ︷︷ ︸ =

{
Ja

−div Ja

}
︸ ︷︷ ︸,

second order first order zeroth order force
in time in time in time

(3.10)

where the quantities are grouped according to the order of the derivatives of the potentials
A and ψ with respect to time. To express the fields in terms of the vector potential A and
the time-integrated scalar potential ψ , recall that H = 1

µ
B = 1

µ
curl A, and

D = εE = ε

(
−grad

∂ψ

∂t
− ∂A

∂t

)
, Jf = σE = σ

(
−grad

∂ψ

∂t
− ∂A

∂t

)
.

Equation (3.10) can be expressed in matrix form after a FE discretization as

Md̈ + Bḋ + K d = F, (3.11)

where d := {A
ψ

} and the matrices M , B, and K are referred to as “mass,” “damping,” and
“stiffness” matrices, respectively. The semidiscrete system (3.11) can be solved using the
Newmark method, in which the “dynamic stiffness” matrix

[K] :=
(

1

(�tn+1)2 β
M + γ

�tn+1 β
B + K

)
(3.12)

is inverted at each time step. The quantities β and γ are two parameters in the Newmark
algorithm, and �tn+1 = tn+1 − tn is the time step size.

The matrices can be conveniently partitioned as a mass matrix, a damping matrix, and a
stiffness matrix,

M =
[

M AA M Aψ

Mψ A Mψψ

]
, B =

[
B AA B Aψ

Bψ A Bψψ

]
, K =

[
K AA 0

0 0

]
, (3.13)

where the superscripts A and ψ correspond to the potentials A and ψ , respectively. Hence,
from (3.12), the dynamic stiffness matrix on the left-hand side in the Newmark method is(

1

(�tn+1)2β

[
M AA M Aψ

Mψ A Mψψ

]
+ γ

�tn+1β

[
B AA B Aψ

Bψ A Bψψ

]
+

[
K AA 0

0 0

])
. (3.14)

Each of these matrices can be partitioned into N × N submatrices, where N represents
the number of basis functions used. For example, the expression in the weak form related

to the term
∂D
∂t

in (3.10) is

∫
�

ε

(
−grad

∂ψ

∂t
− ∂A

∂t

)
· WA d�

=

related to M Aψ︷ ︸︸ ︷∫
�

ε

(
−grad

∂ψ

∂t

)
· WA d� +

∫
�

ε

(
−∂A

∂t

)
· WA d�︸ ︷︷ ︸

related to M AA

. (3.15)
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The second term on the right-hand side of (3.15) can be partitioned into submatrices of the
form

M AA
I J :=

( ∫
�

ε(NI NJ ) d�

)
I ∈ R

3×3, (3.16)

where I ∈ R
3×3 is the identity matrix. The remaining matrices in M and B in (3.13) and

the corresponding N × N submatrices can be expressed as

[κ]Y
AA
I J :=

( ∫
�

κ(NI NJ ) d�

)
I ∈ R

3×3, [κ]Y
ψψ

I J :=
∫

�

κ(grad NI · grad NJ ) d� ∈ R
1×1,

(3.17)

[κ]Y
Aψ

I J :=
∫

�

κ(NI (grad NJ )) d� ∈ R
3×1, [κ]Y

ψ A
I J :=

∫
�

κ((grad NI )NJ ) d� ∈ R
1×3,

where [κ]Y represents the M or B matrix and κ represents the permittivity ε or conductivity
σ for the M or B matrix, respectively. The “stiffness” matrix partitioned into submatrices
K AA

I J ∈ R
3×3 has the same expression as in the static case in (3.7).

3.2.3. Time-Harmonic Problems

A convenient formulation for time-harmonic problems is to represent all quantities as
time-harmonic functions of the frequency ω; i.e., the potentials are A(x, t) := Ā0(x)e(iωt)

and ψ(x, t) := ψ̄0(x)e(iωt). Hence, we only need to calculate the complex functions Ā0 and
ψ̄0 that are independent of time t . We determine the electric and magnetic field quantities
for a prescribed distribution of current (specified by J̄a) and a prescribed voltage (specified
by −iωψ̄a0 ), with appropriate boundary conditions.

The set of linear equations to be solved for the time-harmonic problem involves the
stiffness matrix

K =
[

r K − (ω2) r M (ω) i B

−(ω) r B i K − (ω2) i M

]
, (3.18)

where ω is the frequency of the driving voltage. The condition number of this time-harmonic
stiffness matrix determines the accuracy of the solution. The “mass” matrices (rM, iM) are
positive definite. The “damping” matrices (rB, iB) and the “stiffness” matrices (rK , iK ) are
positive semidefinite. These matrices (partitioned into submatrices) can be expressed as

θ Y :=
[

θ Y AA θ Y Aψ

θ Y ψ A θ Y ψψ

]
∈ R((3n Aθ

+nψθ )×(3n Aθ
+nψθ )), (3.19)

where Y represents the M , B, or K matrix and the prefix θ represents “r” or “i”, which
indicates whether the matrix is associated with the real part or with the imaginary part of
the potentials, respectively. The numbers n Aθ

(n Ar and n Ai ) correspond to the numbers of
nodes at which the real and imaginary parts of the vector potential Ā are to be determined.
The numbers nψθ

(nψr and nψi ) correspond to the numbers of nodes at which the real and
imaginary parts of the scalar potential ψ are to be determined.
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4. UNIT SCALING METHODOLOGY

To achieve the goal of an optimal condition number in the resulting FE matrices, we
introduce a novel generalized unit system to obtain simple Maxwell’s equations without a
4π factor and factors related to physical properties of vacuum. We first introduce 12 multi-
plicative factors to transform the 12 EM quantities involved in the EM governing equations
from the rationalized CGS unit system to the generalized unit system (abbreviated both as
GUS and GEN); we then show that these 12 scaling factors are not free but are constrained
by 11 nonlinear constrained relations, which lead to only two independent scaling factors.
By fixing the value of one scaling factor based on physical reasoning, we obtain a mini-
mization problem: There is only one free scaling factor in the conversion, and this factor
can be assigned an optimal value that minimizes the condition number of the FE matrices.

4.1. Scaling Factors

The transformation of the 12 EM quantities in the EM governing equations from the
RCGS unit system to the GUS (or GEN) is as follows:

GENx = βx
RCGSx, GENt = βt

RCGSt, GENmass = βm
RCGSmass, GENF = βF

RCGSF,

(4.1)

and

GEND = βD
RCGSD, GENE = βE

RCGSE, GENP = βP
RCGSP,

GENH = βH
RCGSH, GENB = βB

RCGSB, GENM = βM
RCGSM,

GENJf = βJ
RCGSJf,

GENρf = βρ
RCGSρf.

(4.2)

The 12 multiplicative factors βD, . . . , βF are the dimensional scaling parameters to be deter-
mined using dimensional analysis. These scaling parameters are, however, not independent;
they are related to each other via Maxwell’s equations (which yield four relations), the con-
stitutive laws (which yields four relations), the force equation (which yields two relations),
and Newton’s second law (which yields one relation). There is a total of 4 + 4 + 2 + 1 = 11
nonlinear relations for the 12 scaling parameters.

4.2. Constrained Relations

If we compare the EM governing equations in the RCGS unit system in terms of dimen-
sions to the equivalent equations in the GUS, the following relations that constrain the 12
scaling factors together are obtained:

• four relations derived from Maxwell’s equations in dimensional form, i.e.,

[curl H] =
[

1

c
Jf

]
gives the relation

βJ

βH
βx = 1

c
,

[curl H] =
[

1

c

∂D
∂t

]
gives the relation

βD

βH

βx

βt
= 1

c
,

(4.3)

[curl E] =
[

1

c

∂B
∂t

]
gives the relation

βB

βE

βx

βt
= 1

c
,

[div D] = [ρf] gives the relation
βρ

βD
βx = 1,
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where the square brackets ([·]) indicate the dimension of the expression enclosed in these
brackets;

• four relations from the constitutive laws (2.5), i.e.,

βE

βD
= 1,

βP

βD
= 1,

βB

βH
= 1,

βM

βH
= 1; (4.4)

• two relations from the force equation (2.6)1 and one relation from Newton’s second
law (2.6)2, i.e.,

βρβE = βF

β3
x

, βJ βB = 1

c

βF

(βx )3
, βF = βmβx

(βt )2
. (4.5)

From Ampère’s law (2.3), we have the dimensional relationships

[RCGScurl RCGSH] =
[

1

c
RCGSJf

]
, [GENcurl GENH] = [GENJf] (4.6)

in the RCGS unit system and the GUS. From (4.1) and (4.2), the relationship for the
quantities H, Jf, and x between the RCGS unit system and the GUS are as follows:

GENH = βH
RCGSH, GENJf = βJ

RCGSJf, and GENx = βx
RCGSx . (4.7)

Dividing (4.6)1 by (4.6)2 and substituting (4.7) we obtain the relation
βJ

βH
βx = 1

c
, which

is the result shown in (4.3)1. The derivation of the other 10 relations proceeds in a similar
fashion.

4.3. Primary Scaling Parameters

With these 11 nonlinear constraint relations, we show that 10 of the 12 scaling parameters
can be expressed in terms of the remaining two, called the two primary scaling parameters.
The choice of the two primary scaling parameters should be made judiciously to reduce the
complexity in the relations among the scaling parameters as much as possible. Further, the
two primary scaling parameters should be independent of each other.

As an example of a bad choice of primary scaling parameters, consider the following two
candidate primary scaling parameters: βt and βx . From (4.3)2, (4.3)3, (4.4)1, and (4.4)3, we
obtain relation βx/βt = 1/c, which then shows that βt and βx are not independent, and thus
invalidates their choice as primary scaling parameters.

From (4.4), we replace the scaling parameters βD and βP by βE , and the scaling param-
eters βH and βM by βB in (4.3), to obtain

βJ

βB
βx = 1

c
,

βE

βB

βx

βt
= 1

c
,

βB

βE

βx

βt
= 1

c
,

βρ

βE
βx = 1. (4.8)

From (4.8)2 and (4.8)3, we obtain

βE = ±βB; βx

βt
= ±1

c
. (4.9)
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We have thus connected all the quantities in (4.4) via (4.9)1; i.e.,

βE = βD = βP = ±βB = ±βH = ±βM . (4.10)

Relation (4.10) essentially tells us that six of the scaling parameters {βE , βD, βP , βB, βH ,

βM} can be represented by a single scaling parameter among these six. Using (4.5)1 in (4.8)4

we obtain

βx

βE
= βE

βF/(βx )3
⇒ βE = ±

√
βF

βx
. (4.11)

Relations (4.10) and (4.11) indicate that βF and βx are potentially good candidates as
primary scaling parameters. Therefore, subsequently, we express all remaining scaling
parameters—other than those in (4.10)—in terms of the two scaling parameters βF and βx .
Using (4.5)2 in (4.8)1, we obtain

βJ βx = 1

c
βB = 1

c

1

c

1

βJ

βF

(βx )3
⇒ βJ = ±1

c

√
βF

(βx )2
.

Substituting (4.11) in (4.8)4, we obtain

βρ = βE

βx
= ±

√
βF

(βx )2
.

From (4.5)3, we obtain

βm = βF (βt )
2

βx
= c2βFβx .

The derived expressions can be summarized as follows:

βE ≡ βD ≡ βP ≡ βB ≡ βH ≡ βM = ±
√

βF

βx
,

(4.12)

βρ = ±
√

βF

β2
x

, βJ = ±1

c

√
βF

β2
x

, βt = ±cβx , βm = c2βFβx .

There are no more constraint relations other than the 11 used; thus βF and βx are indeed
valid independent primary scaling parameters. The relations between the quantities in each
of the unit systems are given in Table II.

Remark 4.1. Note that the numerical values that are assigned to the two scaling pa-
rameters βF and βx are relatively easier to give physical interpretation to than are most
other scaling parameters. In fact, it will be shown that, by the structure of the finite element
matrices, the condition number of these matrices is not affected by any (nonzero) value of
βF . Thus, we conveniently set βF = 1 to preserve the physical meaning of force during
the unit conversion. Numerical values for βx can be selected based on information on the
geometric dimensions of the device.

The scaling parameters for the material properties ε, µ, and σ are obtained from the
relations

E = 1

ε
D, H = 1

µ
B, Jf = σE. (4.13)
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TABLE II

Conversion of Symbols in Equations

Rationalized CGS Gaussian CGS SI GUS (GEN)

RCGSq CGSq
√

4π SIq/
√

ε0 1/(βx

√
βF ) GENq

RCGSD CGSD/
√

4π
√

1/ε0
SID βx/

√
βF

GEND
RCGSE CGSE/

√
4π

√
ε0

SIE βx/
√

βF
GENE

RCGSJf
CGSJf

√
4π SIJf/

√
ε0 c β2

x /
√

βF
GENJf

RCGSρf
CGSρf

√
4π SIρf/

√
ε0 β2

x /
√

βF
GENρf

RCGSH CGSH/
√

4π
√

µ0
SIH βx/

√
βF

GENH
RCGSB CGSB/

√
4π

√
1/µ0

SIB βx/
√

βF
GENB

RCGSM CGSM
√

4π
√

µ0
SIM βx/

√
βF

GENM
RCGSP CGSP

√
4π SIP/

√
ε0 βx/

√
βF

GENP
RCGSx CGSx SIx GENx/βx

RCGSt CGSt SIt GENt/(cβx )

RCGSmass CGSmass SImass GENmass/(c2βxβF )

RCGS F CGS F SI F GEN F/βF

RCGSε CGSε SIε/ε0
GENε

RCGSµ CGSµ SIµ/µ0
GENµ

RCGSσ 4πCGSσ SIσ/ε0 c βx
GENσ

RCGS I
√

4π CGS I SI I/
√

ε0 c/
√

βF
GEN I

RCGSV CGSV/
√

4π
√

ε0
SIV 1/

√
βF

GENV
RCGSC 4πCGSC SIC/ε0

GENC/βx

RCGS L CGS L/(4π) ε0
SI L GEN L/(c2βx )

RCGS R CGS R/(4π) ε0
SI R GEN R/c

The scaling parameters for the current I and for the voltage V are obtained from the rela-
tions

I =
∫

(∂�)I

Jf · n̂ d(∂�), V =
∫
L

E · t̂ dL. (4.14)

The relations for the lumped parameters, i.e., the resistance R, the inductance L , and the
capacitance C , are obtained from

R = V/I, L = V

/
d I

dt
, C = I

/
dV

dt
. (4.15)

Relations (4.13)–(4.15) remain unchanged in the RCGS unit system and in the GUS.

5. GENERALIZED UNIT SYSTEM (GUS)

We introduce the generalized unit system (GUS), and define the scaling parameters αx and
αF , which can be used to transform the FE matrices to the GUS. The condition number of
FE matrices in the GUS is related to the numerical values assigned to the scaling parameters
αx and αF . We study the effects of transforming the FE matrices from the SI system to the
GUS on static, transient, and time-harmonic problems. This transformation improves the
condition number of the FE matrices for the transient and time-harmonic problems, and has
no effect on the condition number of the FE matrices related to static problems.
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5.1. Define a Unit System

To relate the numerical values of the quantities in the generalized unit system (GUS or
GEN) to that in the other unit systems, we define the numerical (dimensionless) scaling
parameter αx as follows:

βx =: αx
generalized meter

centimeter
. (5.1)

Recall from (4.1)1 that GENx = βx
RCGSx . To convert the length RCGSx = 1 centimeter to

the length GENx in the GUS, we substitute RCGSx = 1 and use (5.1) to obtain

GENx = αx
generalized meter

centimeter
1 centimeter = αx generalized meter, (5.2)

i.e.,

1 centimeter ↔ αx generalized meter. (5.3)

We perform a similar process for the remaining 11 multiplicative factors αD, . . . , αF . We
obtain the values for the remaining numerical multiplicative factors in terms of αF and αx ,
where

βF =: αF
generalized dyne

dyne
.

Using βF and βx in (4.12), we obtain a conversion of the numerical values between the unit
systems; the conversions between the most useful quantities are listed in Table III.

Remark 5.1. The multiplicative factor αF does not scale the matrices in the FE solution.
This is because αF appears with equal powers in all terms involved in Maxwell’s equations.
The multiplicative factor αF simply cancels out in the ensuing FE formulation. Hence,
a simplification used in the formulation for capacitors is to fix βF := 1 and obtain all the
scaling parameters β’s in terms of βx . Such a transformation preserves the physical meaning
of force in the GUS to be the same as in other systems. The relations between the symbols
in each of the unit systems is given in Table II with βF = 1. The consequence of βF := 1
is αF = 1; i.e., 1 dyne =: 1 GENdyne. To obtain the numerical multiplicative factors α’s for
the other quantities in terms of αx , set αF = 1 in Tables III.

5.2. Methods of Reducing the Condition Number of FE Matrices

The condition number of the finite element matrices are related to the following:

1. Geometric dimensions of the elements that constitute the FE model is critical to the
condition number of the FE matrices. The main reason for geometric ill-conditioning is poor
aspect ratio,6 e.g., extremely thin electrodes interspersed with thick dielectric material.

2. A large change in material properties, in particular conductivity, contributes more
toward ill-conditioning than geometric dimensions. For example, in passive EM devices,
a mix between conductors and nonconductors leads to discontinuities in conductivity and
induces ill-conditioning in the FE matrices.

6 Aspect ratio is defined as the ratio between the largest edge and the smallest edge of an element. The thickness
of the electrodes are on the order of 1.5 µm and the thickness of the dielectric layers are on the order of 15.0 µm.
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TABLE III

Conversion of Numerical Values

Rationalized Gaussian
CGS CGS SI GUS

q 1 statcoulomb
1√
4π

statcoulomb
10−9

3
√

4π
coulomb αx

√
αF

GENcoulomb

D 1
statvolt

cm

√
4π

statvolt

cm

10−5

(3
√

4π)

coulombs

m2

√
αF

αx

GENvolt
GENm

E 1
statvolt

cm

√
4π

statvolt

cm
3 × 104

√
4π

volts

m

√
αF

αx

GENvolt
GENm

Jf 1
statampere

(cm)2

1√
4π

statampere

(cm)2

1

3
√

4π
× 10−5 ampere

m2

√
αF

3α2
x × 1010

GENampere

(GENm)2

ρf 1
statcoulomb

(cm)3

√
αF√
4π

statcoulomb

(cm)3

1

3
√

4π
× 10−3 coulomb

m3

√
αF

α2
x

GENcoulomb

(GENm)3

H 1 oersted
√

4π oersted
103

√
4π

ampere-turns

m

√
αF

αx

GENoersted

B 1 gauss
√

4π gauss
√

4π10−4 tesla
√

αF

αx

GENgauss

M 1 gauss
1√
4π

gauss
103

√
4π

amperes

m

√
αF

αx

GENgauss

P 1
statcoulomb

(cm)2

1√
4π

statcoulomb

(cm)2

10−5

3
√

4π

coulomb

m2

√
αF

αx

GENcoulomb

(GENm)2

x 1 cm 1 cm 10−2 m αx
GENm

t 1 s 1 s 1 s 3αx × 1010 GENs

mass 1 gm 1 gm 10−3 kg 9αxαF × 1020 GENgm

F 1 dyne 1 dyne 10−5 newton αF
GENdyne

ε 1 RCGS unit 1 CGS unit
1

4π × 9 × 109
SI unit 1 GENunits

µ 1 RCGS unit 1 CGS unit 4π × 10−7 SI unit 1 GENunit

σ 1 RCGS unit
1

4π
CGS unit

1

4π × 9 × 109
SI unit

1

3αx × 1010
GENunit

I 1 statampere
1√
4π

statampere
10−9

3
√

4π
ampere

√
αF

3 × 1010
GENampere

V 1 statvolt
√

4π statvolt 3
√

4π × 102 volt
√

αF
GENvolt

C 1 statfarad
1

4π
statfarad

10−11

9(4π)
farad αx

GENfarad

L 1 stathenry 4π stathenry 9(4π) × 1011 henry 9αx × 1020 GENhenry

R 1 statohm 4π statohm 9(4π) × 1011 ohm 3 × 1010 GENohm

In Section 3, the final matrix equations obtained via the FE formulation are linear equa-
tions of the form Ad = b, where A ∈ R

n×n is a nonsingular matrix, b ∈ R
n×1 is the right-

hand side, and d ∈ R
n×1 is the solution. The condition number of the matrix A determines

the numerical accuracy of the solution d. Here we present a method of “scaling” or “pre-
conditioning” to alleviate the effects of poor condition numbers. Though we choose the
method of Gauss elimination to demonstrate the effects of scaling, similar comments are
applicable to other solution methods as well.

5.2.1. Preconditioning

One of the methods used to decrease the roundoff error is to “preprocess” matrix A
before solution. This matrix preconditioning method scales the matrix A by pre- and
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postmultiplying it by two selected matrices, thereby reducing its condition number [16].
Diagonal scaling, a standard preconditioning approach to improve the convergence of the
iterative solver, has been widely used in various engineering applications [17–19]. Incom-
plete Cholesky factorization, first introduced in [18], has also been used as a preconditioning
strategy. Unfortunately, only certain classes of positive definite matrices can be stably pre-
conditioned by the incomplete Cholesky factorization [16].

Several new preconditioning methods were proposed recently to tackle the ill-conditioned
linear systems [5, 20, 21]. In [5], to annihilate the effect of the extreme eigenvalues a deflated
CG method is used. The convergence behavior of the CG method improves considerably
and a reliable termination criterion is obtained. In [21] an effective preconditioner was
proposed. However, an appropriate shift constant is difficult to find. The absence of a
convenient and systematic procedure to construct the preconditioning matrices motivates
changing of the traditional unit system to the generalized unit system. Unlike the previously
mentioned preconditioning methods, if we start from preprocessing the resulting linear
system matrices, our generalized unit system, inspired directly from the dimensional nature
of physical problems, minimizes the condition number of the FE matrices and thus improves
the numerical behavior of the solution procedure significantly.

5.2.2. Use of GUS

Motivated by the physics of the problem, we first describe the effects of scaling on
the solution to a system of linear equations and then present a procedure to scale the
FE matrix equations by changing the unit system used in Maxwell’s equations, i.e., by
changing αx . This approach can also be applied to a solution procedure using the Coulomb
gauge.

5.2.2.1. Static problems. Recall from Table I that Gauss’s law has an identical
expression7 in both the SI system and the GUS, i.e., SIdiv SID − SIρf = 0 and GENdiv GEND −
GENρf = 0. Therefore, the FE matrix equations given in (3.5)

[SI Mψψ ]
{

SIψ̇0
} = {SI Fψ0} and [GEN Mψψ ]

{
GENψ̇0

} = {GEN Fψ0} (5.4)

look identical, with entries computed as

U M
ψψ

I J :=
∫

U�\�cond

Uε(Ugrad NI ) · (Ugrad NJ ) d�, (5.5)

where U represents both the SI system and the GUS. The numerical values for the entries of
the FE matrices [SI M

ψψ
] and [GEN M

ψψ
] are, however, different. For a particular problem

the numerical values of the entries in the matrix [GEN M
ψψ

] depend on the numerical scaling
parameter αx . To derive a relation between the entries of the matrices in (5.5) for the SI and
the generalized unit systems, we recall the following relations from Table III:

for x : 1 SI unit ≡ 102 αx
GENunit, for x3: 1 SI unit ≡ 106(αx )

3 GENunit,

for grad: 1 SI unit ≡ 1

102(αx )

GENunit, for ε: 1 SI unit ≡ 1

ε0

GENunit.
(5.6)

7 Without a left superscript, the unit system used is implicitly the SI system.
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Hence,∫
SI�\�cond

SIε(SIgradNI ) · (SIgradNJ ) d�

≡ 1

ε0

1

102αx

1

102αx
(102αx )

3
∫

GEN�\�cond

GENε(GENgrad NI ) · (GENgrad NJ ) d�

≡ 102αx

ε0

∫
GEN�\�cond

GENε(GENgrad NI ) · (GENgrad NJ ) d�; (5.7)

i.e.,

[SI Mψψ ] = (αx × 102)

ε0
[GEN Mψψ ]. (5.8)

Upon transforming the matrix from the SI system to the GUS, all entries of the matrix
[SI M

ψψ
] are multiplied equally by the scaling factor ε0/(αx × 102). Hence, the ratio of the

largest to the smallest eigenvalue, i.e., the condition number, remains the same in both unit
systems.

Recall from Table I that Ampère’s law has an identical expression in both the SI sys-
tem and the GUS; i.e., SIcurl SIH − SIJa = 0 and GENcurl GENH − GENJa = 0. Therefore the
corresponding FE matrix equations given in (3.6)

[SI K AA]
{

SIA0
} = {SI F A0} and [GEN K AA]

{
GENA0

} = {GEN F A0} (5.9)

look identical, with entries computed as

U K AA
I J :=

∫
U�

1
Uµ

(Ugrad NI · Ugrad NJ )1 d� −
∫

U�

1
Uµ

(Ugrad NJ ⊗ Ugrad NI ) d�,

(5.10)

where U represents both the SI system and the GUS. For a particular problem, the numerical
values of the entries in the matrix [GEN K

AA
] depend on the numerical scaling parameter

αx . We recall the following relations from Table III:

for curl: 1 SI unit ≡ 1

102(αx )

GENunit, for µ: 1 SI unit ≡ 1

µ0

GENunit.

Hence,∫
SI�

1
SIµ

(SIgrad NI ) · (SIgrad NJ ) d�

≡ µ0
1

102αx

1

102αx
(102αx )

3
∫

GEN�

1
GENµ

(GENgrad NI ) · (GENgrad NJ ) d�

≡ µ0 102αx

∫
GEN�

1
GENµ

(GENgrad NI ) · (GENgrad NJ ) d� (5.11)

and ∫
SI�

1
SIµ

(SIgrad NJ ) ⊗ (SIgrad NI ) d�

≡ µ0 102αx

∫
GEN�

1
GENµ

(GENgrad NJ ) ⊗ (GENgrad NI ) d�; (5.12)
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i.e.,

[SI K AA] = µ0 αx × 102 [GEN K AA]. (5.13)

Similar to electrostatic problems, upon transforming the matrix from the SI system to the
GUS, all entries of the matrix [GEN K AA] are multiplied throughout by the scaling factor
1/(µ0 102 αx ). Hence, the condition number remains the same in both unit systems.

5.2.2.2. Transient problems. Using Table III we obtain relations between the FE
matrices given in Section 3 in the SI unit system and in the GUS for the transient problems.
For example, consider the matrix M AA defined in (3.16). Using (5.6) we obtain

∫
SI�

SIεNI · NJ d� ≡ (102αx )
3

ε0

∫
GEN�

GENεNI · NJ d�; (5.14)

i.e., SI M AA = [(αx × 102)3/ε0] GEN M AA. Similarly, we obtain the following relations for
the other matrices in (3.17). The mass matrix M and the damping matrix B, represented by
Y as[

SIY AA SIY Aψ

SIY ψ A SIY ψψ

]
= 1

aε0

[
(αx × 102)3 GENY AA (αx × 102)2 GENY Aψ

(αx × 102)2 GENY ψ A (αx × 102) GENY ψψ

]
, (5.15)

where a = 1 for the M matrix and a = c αx for the B matrix, and the stiffness matrix

[
SI K AA 0

0 0

]
= µ0

[
(αx × 102) GEN K AA 0

0 0

]
(5.16)

are related by the length scaling parameters numerical multiplicative factor αx . Different
values of αx result in different generalized unit systems. Using these relations, we can relate
the matrix (3.14) in the GUS to that in the SI system as

[GEN
K] :=

(
1

(GEN�tn+1)2β

[
GEN M AA GEN M Aψ

GEN Mψ A GEN Mψψ

]

+ γ

GEN�tn+1β

[
GEN B AA GEN B Aψ

GEN Bψ A GEN Bψψ

]
+

[
GEN K AA 0

0 0

])

= ε(cαx )
2

(SI�tn+1)2β

[ 1
(αx ×102)3

SI M AA 1
(αx ×102)2

SI M Aψ

1
(αx ×102)2

SI Mψ A 1
(αx ×102)

SI Mψψ

]

+ (cε)(cαx )γ

SI�tn+1β

[
αx

(αx ×102)3
SI B AA αx

(αx ×102)2
SI B Aψ

αx
(αx ×102)2

SI Bψ A αx
(αx ×102)

SI Bψψ

]

+ 1

µ0

[
1

αx ×102
SI K AA 0

0 0

]
. (5.17)

For the problem at hand, the material properties and the geometry of the domain � are
fixed, and hence the FE matrices in the SI unit system are fixed for a given discretization.
However, changing the value for αx can improve the condition number of the matrix K in
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the GUS. In theory, we could find an optimal value for αx to minimize the condition number
of the dynamic stiffness matrix GEN

K in the GUS, i.e.,

αopt
x := min

αx �=0
(condition number of GEN

K), (5.18)

where α
opt
x is the optimal scaling parameter. Numerically, we could construct a coarse mesh

for the problem at hand, and vary αx to find an approximate optimal value.

5.2.2.3. Time-harmonic problems. The relationships (5.15) to (5.16) for the mass,
damping, and stiffness matrices are the same for the time-harmonic problem. This sim-
ilarity implies that the condition number of the matrix

[GENK] :=
[

GEN rK − (GENω2) GEN rM (GENω) GEN iB

−(GENω) GEN rB GEN iK − (GENω2) GEN iM

]
(5.19)

can be changed by varying the numerical scaling factor αx . Note that for the frequency we
have the conversion SIω = (1/cαx )

GENω. Similarly to transient problems, we can find an
optimal value for αx to minimize the condition number of the matrix GENK, i.e.,

αopt
x := min

αx �=0
(condition number of GENK), (5.20)

where α
opt
x is the optimal scaling parameter.

The effects of scaling depend on the excitation frequency. At very low frequencies,
Maxwell’s equations require a solution only to an uncoupled problem. For an uncoupled
problem, where the vector potential A and the scalar potential ψ are solved separately,
scaling has no effect. Hence, scaling is most effective for problems at higher frequencies.

6. NUMERICAL EXAMPLES

We apply the proposed multiple-scale technique to a simple parallel plate capacitor shown
in Fig. 1a. The dimensions of the parallel plate capacitor are equal to the single cell in an
MLCC [7, 9]. The parallel plate capacitor considered here does not have the positive and
negative vias of the single cell; the top and bottom electrodes are flat rectangular plates.
The electrodes have a footprint of 0.635 × 0.635 cm, and are 1.5-µm thick. The dielectric
in between is 15-µm thick. The conducting material used for the electrodes and the vias
is silver palladium, and the dielectric material is a ceramic such as barium titanate. The
material properties for the electrode and the dielectric are listed in Table IV.

TABLE IV

Material Properties for the MLCC in the SI Unit System

Permittivity ε Permeability µ Conductivity σ

Material ( farad/m) (henry/m) (1/(ohm-m))

Dielectric 1500ε0 µ0 0.0
Electrodes & Vias ε0 1.0008µ0 2.9412 × 106

Bus ε0 0.999991µ0 5.8 × 107

Air ε0 1.0000004µ0 0.0
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FIG. 2. Meshes for the parallel plate capacitor: The mesh is refined along the horizontal plane. See Table V
for details.

A voltage is applied at the top plane of the top electrode and the bottom plane of the
bottom electrode. The electric and magnetic fields are determined by solving the coupled
electromagnetic problem; i.e., the matrix equation (3.11) is solved for each time step in the
transient solution. Similarly, the matrix equation is solved for each frequency to determine
the time-harmonic solution.

As explained in Section 4, using the multiple-scale technique reduces the condition
number of the FE matrices, thereby increasing the accuracy of the solution. We examine
the effect on the condition number with changing mesh size. The capacitor shown in Fig. 2
is discretized using four different meshes. The number of nodes for the four meshes shown
in Fig. 2 range from 20 nodes for mesh (a) to 245 nodes for mesh (d). Table V lists the
number of nodes, the number of elements, and the unconstrained degrees of freedom in the
FE solution. Figure 3 shows the effect of changing the mesh size and varying the scaling
factor αx for the transient and the time-harmonic solutions, respectively. We observe that
the mesh size does not significantly affect the choice of the optimal scaling factor α

opt
x . We

conclude for this particular example that α
opt
x ≈ 103 for the transient and time-harmonic

solutions. Hence, in practice, we could choose the optimal scaling factor α
opt
x from a coarse

mesh and use it for a refined mesh. We also observe that the condition number increases
with an increase in the number of degrees of freedom in the solution. The condition number
shows a significant improvement from the SI system of units to the generalized system
of units for both the transient and the time-harmonic solutions; see Table VI for details.
The relative error improves significantly for the time-harmonic solution: For mesh (d) we
observe in Table VI that the relative error improves from O(10−5)% in the SI unit system
to O(10−11)% in the optimal GUS. In the transient problem, where the related matrices are

TABLE V

The Specifications of the Different Meshes Used to Solve the

Parallel Plate Capacitor Problem

Degrees of freedom
Number of Number of

Mesh nodes elements Transient Time-harmonic

(a) 20 4 64 128
(b) 45 16 144 288
(c) 125 64 400 800
(d) 245 144 784 1568

Note. The different meshes are shown in Fig. 2.
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FIG. 3. The change in the condition number with changing mesh size and varying scaling factor αx . The solid
line, the dashed line, the dashed-dotted line, and the dotted line are for meshes (a), (b), (c), and (d) in Table V,
respectively.

symmetric, the relative error (see Footnote 4) was already minimal before rescaling and
thus did not decrease further after rescaling, even though there was a significant decrease
in the condition number as a result of rescaling. On the other hand, in the time-harmonic
problem, where the related matrices are nonsymmetric, the relative error was much larger
(by an order of 1012) before rescaling, and thus it decreased significantly (together with the
condition number) after rescaling.

In Fig. 4 we examine the effects of change in the time step size for transient solutions
and change in frequency for the time-harmonic solutions. It is evident that the optimal
scaling factor α

opt
x depends on the time step size and on the frequency. For transient so-

lutions (Fig. 4a), at smaller time step size, numerical differences among the coefficients

TABLE VI

The Condition Number and Relative Error for the Parallel Plate

Capacitor Problem

Generalized unit system
SI unit system (αx = 103)

Condition Relative Condition Relative
Mesh number error number error

Transient solutions
(a) 8.75 × 1018 2.40 × 10−17 9.10 × 108 1.05 × 10−17

(b) 1.15 × 1019 1.95 × 10−17 1.22 × 109 1.95 × 10−17

(c) 1.70 × 1019 1.43 × 10−17 1.27 × 109 1.02 × 10−17

(d) 1.80 × 1019 1.53 × 10−17 1.34 × 109 1.41 × 10−17

Time-harmonic solutions
(a) 5.21 × 1020 2.17 × 10−5 3.27 × 1012 1.05 × 10−11

(b) 2.74 × 1021 6.26 × 10−5 4.39 × 1012 9.48 × 10−11

(c) 2.40 × 1020 7.08 × 10−5 4.58 × 1012 1.96 × 10−10

(d) 2.55 × 1020 8.04 × 10−5 4.52 × 1012 2.06 × 10−10

Note. The different meshes are shown in Fig. 2.
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FIG. 4. The change in the condition number with varying scaling factor αx . In (a), the transient solution,
the solid line, the dashed line, and the dashed-dotted line are with the time step size �tn+1 = 2π/109 SI units,
�tn+1 = 2π/107 SI units, and �tn+1 = 2π/105 SI units, and in (b), the time-harmonic solution, the solid dashed,
and dashed-dotted lines are with angular frequency ω = 109 SI units, ω = 107 SI units, and ω = 105 SI units,
respectively.

(1/µ), σ/�tn+1, and ε/�t2
n+1 of the FE matrices (5.17) are smaller, and we obtain smaller

condition numbers. Similarly, for time-harmonic solutions (Fig. 4b), at higher frequencies,
the numerical differences among the coefficients (1/µ), σω, and εω2 of the FE matrices
(5.19) are smaller, and we obtain smaller condition numbers. Moreover, the optimal scaling
factor α

opt
x changes with frequency. For example, in a time-harmonic solution, α

opt
x ≈ 101

for ω = 105, and α
opt
x ≈ 103 for ω = 109.

The properties of the material, i.e., the conductivity σ , permittivity ε, and the permeability
µ, affects the choice of an optimal scaling factor. Figure 5 (condition number) and Fig. 6
(relative error) show the effects of changing the conductivity with the SI unit system and the
GUS. It is evident that a higher conductivity and lower frequency degrade the condition of
the solution in the SI unit system and the use of the multiple-scaling technique is imperative
to avoid numerical ill-conditioning.

FIG. 5. The change in the condition number with varying conductivity σ of the electrode at angular frequency
(a) ω = 107 SI units and (b) ω = 1011 SI units. The solid line is with the GUS (αx = 103), and the dashed line is
with the SI unit system.
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FIG. 6. The change in the relative error with varying conductivity σ of the electrode at angular frequency
(a) ω = 107 SI units and (b) ω = 1011 SI units. The solid line is with the GUS (αx = 103), and the dashed line is
with the SI unit system.

7. CLOSURE

We have introduced a new multiple-scale technique to model electromagnetic systems.
Our new multiple-scale technique, which leads to our proposed generalized unit system,
offers the flexibility of choosing an effective interaction between the different physical
processes. We nondimensionalize and scale Maxwell’s equations to a new generalized
system of units. Numerical factors that are related to the physical properties of vacuum in
Maxwell’s equations and in the constitutive laws are eliminated since they are absorbed
into the field quantities in the scaling process. This decreases the condition number of the
matrices in the FE solution, and we thereby reduce the error significantly.

The scaling parameter is decided by the geometry and material properties of the electro-
magnetic device components. The multiple-scale technique permits a change in the scaling
parameter and, hence, is easily adapted to components with a variety of geometrical shapes
and material properties.

Numerical examples showed that the multiple-scale technique can significantly reduce
the condition number of the FE matrices, thereby increasing the accuracy of the solution. We
also conclude that scaling improves the condition number of the FE matrix in both transient
and time-harmonic problems. However, only solutions to time-harmonic problems show a
significant improvement in accuracy. We also studied the effects of mesh refinement on the
choice of an optimal scaling factor α

opt
x . We conclude that α

opt
x is not significantly affected

by mesh refinement. However, the scaling factor α
opt
x depends on the excitation frequency

and the material properties.
The application of the proposed GUS is not restricted to the stiff problem encountered

in the case of the example studied here.

ACKNOWLEDGMENT

The authors are thankful for the research support of the National Science Foundation.

REFERENCES

1. A. Nicolet, F. Delince, N. Bamps, A. Genon, and W. Legros, A coupling between electric circuits and 2d
magnetic field modeling, IEEE Trans. Magn. 29(2), 1697 (1993).



GENERALIZED UNIT SYSTEM FOR ELECTROMAGNETICS 429

2. R. K. Wangsness, Electromagnetic Fields, 2nd ed. (Wiley, New York, 1986).

3. V. Rojansky, Electromagnetic Fields and Waves (Dover, New York, 1979).

4. W. Morweiser, G. Meunier, and H. Salze, Computer-aided design of passive multilayer components using
electromagnetic field computation, IEEE Trans. Components, Packag. Manuf. Technol. A 17(3), 338 (1994).

5. C. Vuik, A. Segal, and J. A. Meijerink, An efficient preconditioned CG method for the solution of a class of
layered problems with extreme contrasts in the coefficients, J. Comput. Phys. 152, 385 (1999).

6. B. E. MacNeal, Ed., MSC/EMAS Modeling Guide (The MacNeal–Schwendler Corp., Los Angeles, 1989).

7. K. D. T. Ngo, Lumped parameter model for a multilayer ceramic capacitor, Private Communication (1992).

8. K. D. T. Ngo, Multilayer capacitor suitable for substrate integration and multimegahertz filtering, US Patent
No. 4,949,217.

9. L. Vu-Quoc, V. Srinivas, and Y. Zhai, Finite element analysis of advanced multilayer capacitors: Field com-
putation and postprocessing for lumped parameters, Int. J. Numer. Methods Eng., to appear, 2002.

10. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge Univ. Press, New York,
1983).

11. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

12. G. A. Maugin, The method of virtual power in continuum mechanics: Applications to coupled fields, Acta
Mech. 35, 1 (1980).

13. T. J. R. Hughes, The Finite Element Method (Prentice–Hall, Englewood Cliffs, NJ, 1987).

14. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed. (McGraw–Hill, New York, 1989).

15. B. E. MacNeal, J. R. Brauer, and R. N. Coppolino, A general finite element vector potential formulation of
electromagnetics using a time-integrated electric scalar potential, IEEE Trans. Magn. 26(5), 1768 (1990).

16. G. H. Golub and C. F. van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, 1987).

17. R. K. Coomer and I. G. Graham, Massively parallel methods for semiconductor device modelling, Computing
56(1), 1 (1996).

18. R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr., and J. W. Painter, The multigrid method for diffusion equations
with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput. 2(4), 430 (1981).

19. M. J. Hagger, Iterative Solution of Large, Sparse Systems of Equations, Arising in Groundwater Flow Models,
Ph.D. thesis (University of Bath, 1995).

20. F. X. Canning and J. F. Scholl, Diagonal preconditioners for the EFIE using a wavelet basis, IEEE Trans.
Antenna Propagation 44(9), 1239 (1996).

21. H. J. Kim, K. Choi, and H. B. Lee, A new algorithm for solving ill-conditioned linear systems, IEEE Trans.
Magn. 32(3), 1373 (1996).


	1. INTRODUCTION
	FIG. 1.

	2. ELECTROMAGNETIC GOVERNING EQUATIONS
	TABLE I

	3. GALERKIN FE PROJECTION (SI UNIT SYSTEM)
	4. UNIT SCALING METHODOLOGY
	TABLE II

	5. GENERALIZED UNIT SYSTEM (GUS)
	TABLE III

	6. NUMERICAL EXAMPLES
	TABLE IV
	FIG. 2.
	TABLE V
	FIG. 3.
	TABLE VI
	FIG. 4.
	FIG. 5.
	FIG. 6.

	ACKNOWLEDGMENT
	REFERENCES

